NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons

نویسندگان

  • Renuka Ramachandra
  • Stephanie Y. McGrew
  • James C. Baxter
  • Jason R. Howard
  • Keith S. Elmslie
چکیده

Sensory neurons in the dorsal root ganglia (DRG) express a subset of voltage dependent sodium channels (NaV) including NaV1.1, 1.6, 1.7, 1.8 and 1.9. Previous work supported preferential localization of NaV1.8 channels to small-medium diameter, nociceptive afferent neurons. However, we recently published evidence that NaV1.8 was the dominant NaV channel expressed in the somas of small, medium and large diameter muscle afferent neurons, which is consistent with other reports. Here, we extend those results to show that NaV1.8 expression is not correlated with afferent neuron diameter. Using immunocytochemistry, we found NaV1.8 expression in ~50% of sensory afferent neurons with diameters ranging from 20 to 70 µm. In addition, electrophysiological analysis shows that the kinetic and inactivation properties of NaV1.8 current are invariant with neuron size. These data add further support to the idea that NaV1.8 contributes to the electrical excitability of both nociceptive and non-nociceptive sensory neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium channels and mammalian sensory mechanotransduction

BACKGROUND Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. β and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epitheli...

متن کامل

A 3.7 kb fragment of the mouse Scn10a gene promoter directs neural crest but not placodal lineage EGFP expression in a transgenic animal.

Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 20...

متن کامل

Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas

BACKGROUND Voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed preferentially in small diameter sensory neurons, and are thought to play a role in the generation of ectopic activity in neuronal cell bodies and/or their axons following peripheral nerve injury. The expression of Nav1.8 and Nav1.9 has been quantified in human lingual nerves that have been previously injured inadvertently...

متن کامل

Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons.

Idiopathic small-fiber neuropathy (I-SFN), clinically characterized by burning pain in distal extremities and autonomic dysfunction, is a disorder of small-caliber nerve fibers of unknown etiology with limited treatment options. Functional variants of voltage-gated sodium channel Nav1.7, encoded by SCN9A, have been identified in approximately one-third of I-SFN patients. These variants render d...

متن کامل

Voltage-dependent sodium (NaV) channels in group IV sensory afferents

Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013